Combined molecular dynamics–direct simulation Monte Carlo computational study of laser ablation plume evolution

نویسندگان

  • Michael I. Zeifman
  • Barbara J. Garrison
  • Leonid V. Zhigilei
چکیده

A two-stage computational model of evolution of a plume generated by laser ablation of an organic solid is proposed and developed. The first stage of the laser ablation, which involves laser coupling to the target and ejection of molecules and clusters, is described by the molecular dynamics ~MD! method. The second stage of a long-term expansion of the ejected plume is modeled by the direct simulation Monte Carlo ~DSMC! method. The presence of clusters, which comprise a major part of the overall plume at laser fluences above the ablation threshold, presents the main computational challenge in the development of the combined model. An extremely low proportion of large-sized clusters hinders both the statistical estimation of their characteristics from the results of the MD model and the following representation of each cluster size as a separate species, as required in the conventional DSMC. A number of analytical models are proposed and verified for the statistical distributions of translational and internal energies of monomers and clusters as well as for the distribution of the cluster sizes, required for the information transfer from the MD to the DSMC parts of the model. The developed model is applied to simulate the expansion of the ablation plume ejected in the stress-confinement irradiation regime. The presence of the directly ejected clusters drastically changes the evolution of the plume as compared to the desorption regime. A one-dimensional self-similar flow in the direction normal to the ablated surface is developed within the entire plume at the MD stage. A self-similar two-dimensional flow of monomers forms in the major part of the plume by about 40 ns, while its counterpart for large clusters forms much later, leading to the plume sharpening effect. The expansion of the entire plume becomes self-similar by about 500 ns, when interparticle interactions vanish. The velocity distribution of particles cannot be characterized by a single translational temperature; rather, it is characterized by a spatially and direction dependent statistical scatter about the flow velocity. The cluster size dependence of the internal temperature is mainly defined by the size dependence of the unimolecular dissociation energy of a cluster. © 2002 American Institute of Physics. @DOI: 10.1063/1.1494129#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of nanoparticles by short and ultra-short laser pulses

The main objective of this study is to explain the experimental observations. To simulate material ablation, plume formation and its evolution, we developed a combined molecular dynamics (MD) and direct simulation Monte Carlo (DSMC) computational study of laser ablation plume evolution. The first process of the material ablation is described by the MD method. The expansion of the ejected plume ...

متن کامل

Generation of nanoparticles by laser ablation: Combined MD- DSMC computational study

The early stage of the ablation plume formation and the following dynamics of the plume expansion are studied numerically using a combination of molecular dynamics and the direct simulation Monte Carlo methods. The direct cluster ejection from the target and the following cluster-monomer and cluster-cluster collisions are considered. The presence of the ablated clusters is shown to strongly aff...

متن کامل

Computational model for multiscale simulation of laser ablation

Multiscale computational approach that combines different methods to study laser ablation phenomenon is presented. The methods include the molecular dynamics (MD) breathing sphere model for simulation of the initial stage of laser ablation, a combined MD finite element method (FEM) approach for simulation of propagation of the laser-induced pressure waves out from the MD computational cell, and...

متن کامل

Multiscale simulation of laser ablation of organic solids: evolution of the plume

A computational approach that combines the molecular dynamics (MD) breathing sphere model for simulation of the initial stage of laser ablation and the direct simulation Monte Carlo (DSMC) method for simulation of the multi-component ablation plume development on the timeand length-scales of real experimental configurations is presented. The combined multiscale model addresses different process...

متن کامل

A Hybrid MD-DSMC Model of Picosecond Laser Ablation and Desorption

A two-stage computational model of the evolution of a plume generated by laser ablation of an organic solid is presented and discussed. The first stage of the laser ablation involves laser coupling to the target and ejection of the plume and is described by molecular dynamics (MD) simulations. The following stage of a long-term expansion of the ejected plume is modeled by the direct simulation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002